

Integration of QuEst and Okapi

Final Activity Report

Participants:

Gustavo Paetzold, Lucia Specia and Kashif Shah (Sheffield University)

Yves Savourel (Okapi)

1. Introduction

The proposed project aimed at exploring the integration of the QuEst toolkit

within the Okapi Framework, allowing for users to perform translation quality

estimation along with Okapi’s many functionalities.

 QuEst (http://www.quest.dcs.shef.ac.uk/) is an open source toolkit for

machine translation quality estimation which has been developed at the

University of Sheffield, and is capable of both crafting translation quality

estimation models and applying them onto translations in order to estimate their

quality. The Okapi framework (http://www.opentag.com/okapi/) is an open

source and cross-platform set of tools and applications designed to help in

creating or improving translation/localization processes.

 The project’s description proposed three main objectives, each of which

was accomplished within the deadline initially estimated:

 [April-15-2014] A new Okapi Step was added to the Okapi Pipeline

Editor, which has the purpose of employing QuEst in calculating feature

values and annotating translation candidates with a predicted quality

value, for already existing prediction models.

[June-30-2014] An Okapi tool was developed to allow users to build

prediction models and the relevant resources for these models, through

existing or novel functionalities added to QuEst. This tool covers the

entire pipeline of resource generation, training (model building) and

testing (generation of quality predictions).

 [July-30-2014] A pilot user study was performed on how quality

predictions could be used within the Okapi workflow. The focus of the

experiment was on the selection of translations with a certain quality

band for error annotation within Okapi.

 In what follows we describe all activities developed throughout the

entirety of the project schedule, which cover in more detail the three main goals

just described. We also provide experiments conducted with the resources

developed along with a discussion on the results obtained.

2. Activities Developed

2.1. The QuEst Step

As previously mentioned, the main objective concluded by 15 of April for the

Integration of QuEst and Okapi project is the development of an Okapi Step for

translation quality estimation.

 From the beginning of February until the beginning of March, the group

focused on the task of inspecting the Okapi Framework in order to become

more familiar with its functionalities and also with the software engineering

techniques/programming tools used in its development. The design of the new

Okapi Step for translation quality estimation began at the beginning of March.

To allow for the group to work on the new Okapi Step with both security and

versioning control, a Google Code project was created, which is currently

hosted at https://code.google.com/p/okapi-quest/ and available for all group

members to access and modify.

 A “vanilla” version of QuEst, which is available for download at

http://www.quest.dcs.shef.ac.uk/, was the one chosen to be integrated with the

Okapi Framework. The objective was to compile the QuEst project into a Java

library, which could be easily imported into the Okapi Framework library

repositories. The code of the QuEst project was initially submitted to an

adaptation, which allowed for the group to create a QuEst version more suited

for the task. To the “vanilla” version were added some of the new translation

features supported by the QuEst Online version, which allows for it to extract up

to 50 features. Were also corrected minor coding issues such as hard-coded

function parameters, improperly handled buffered streams and unnecessary

method calls.

 The new Okapi Step for quality estimation is represented inside the

Okapi Framework by the following three Java classes, all of which make use of

the adapted QuEst library:

 QuestStep.java: Extends the BasePipelineStep class from the Okapi

Framework, and implements the methods necessary for the step to be

made available in the Okapi Pipeline Editor. It reads all translations from

the input files provided by the user and invokes an instance of the

QuestProcessor class to produce quality estimations for them.

https://code.google.com/p/okapi-quest/

 QuestProcessor.java: Invokes the methods and functions of the QuEst

library in order to calculate feature values, and uses the Java SVM

(Support Vector Machine) library to load the prediction model provided by

the user and then generate translation quality scores. It has also a built-

in resource generation helper: if the user does not know how to generate

the language model or ngram count files necessary for the step to run, it

automatically generates such resources.

 Parameters.java: Implements the IEditorDescriptionProvider interface,

and is responsible for providing all data necessary for the Okapi

Framework to build the interface for the user to setup the settings of the

quality estimation step in the Okapi Pipeline Editor.

 Along with the three main classes were also created unit tests, which

automatically configures and runs the step onto a set of test parameters,

allowing for the group to easily debug the step and find possible bugs and

errors.

 When the user adds the quality estimation step to a custom pipeline, the

setup interface shown in Figure 1 appears in the right-hand side of the Okapi

Pipeline Editor. It allows for the user to provide the necessary files for the QuEst

methods to run.

Figure 1 – QuEst Step parameters

The input parameters necessary for the quality estimation step to perform

successfully are the following:

 Lowercase: Determines whether or not the input data should be
lowercased.

 Temporary Folder: Folder where the intermediate processed input files
will be stored. Some of the files which may be stored in the input folder
are the ones containing the lowercased versions of the input translations
and their perplexity measures.

 Output Folder: Folder where the files containing the quality estimation
scores will be stored. In its current version, the quality estimation step
produces output in three distinct formats: plain text, XML and TMX.

 Features File: An XML file describing which features QuEst should
calculate for the given translations.

 Alignment Probability File: A file containing the alignment probability
for the words of source and target languages of the translations provided.
The file may be produced by any bilingual word aligner, but must be in
the same format produced by GIZA++.

 Source N-gram File: File containing the N-gram counts for the
translations’ source language.

 Source and Target Training Corpus: Files containing sentences in the
source and target languages.

 Source and Target Language Models: Two separate files containing a
language model for the translations’ both source and target languages.
The files must be in ARPA format, and may be produced by any
language modelling tool.

 SRILM Binaries Folder: Path of the folder containing the compiled
binaries of the user’s SRILM installation.

 GIZA++ Root Path: Path of the folder containing the compiled binaries
of the user’s GIZA++ installation.

 MKCLS Root Path: Path of the folder containing the compiled binaries of
the user’s MKCLS installation.

 Quality Prediction Model File: Path for the prediction model for the
calculation of quality estimations. The file must be in the same format
produced by the Java SVM library.

 Once the parameters are set and the user runs the pipeline, the step

begins to execute. Initially the step reads and stores all translations. Then, the

sentences are passed onto a pre-processing phase, where they are submitted

to tokenization, lowercasing (if selected by the user) and measure calculation by

the SRILM Language Modelling tool. Once finished the pre-processing routine,

the methods provided by the QuEst library calculate the feature values for each

translation. The SVM prediction model is then loaded, and the feature values

previously produced, along with the given model, are used in the estimation of

quality scores. Both feature values and quality estimation scores are then finally

stored in a TMX file, which is placed in the output folder specified by the user

during setup.

2.2. The SVM Model Builder Step

The main goal to be concluded by the 30th of June, according to the project’s

schedule, was the development of a tool to facilitate the creation of quality

prediction models in the Okapi Framework. For that purpose, we chose to

create another Okapi Step.

 The SVM Model Builder Step has the goal of allowing for the user to

easily create a translation quality prediction model to be used by the QuEst

Step. In order to produce such models, we have created an adapted version of

the LibSVM (Fan et. al, 2005), an open-source Java library which allows for one

to train Support Vector Machines onto quality estimation datasets and save the

models produced in text format. The adaptation made to the original LibSVM

consisted on modifying it in order for the library to be easily imported into the

Okapi Framework.

The SVM Model Builder Step is represented inside the Okapi Framework

by the following three Java classes:

 SVMModelBuilderStep.java: Extends the BasePipelineStep class from

the Okapi Framework, and implements the methods necessary for the

step to be made available in the Okapi Pipeline Editor. It reads three

input files, which must be provided by the user: two files containing n

sentences each in source and target languages, as well as a file

containing the score for each of the n translations. After reading the input

files, it calculates the prediction feature values, as specified by the user

through the step’s interface, by employing the QuestProcessor.java

class, described in Section 2.1. With feature values calculated, it invokes

the SVModelBuilderProcessor.java in order for the model to be quality

prediction model to be built and saved in a text file.

 SVMModelBuilderProcessor.java: It receives as input the feature

values previously produced as well as the training quality prediction

scores read by the SVMModelBuilderStep.java class. With such data

loaded, it invokes the adapted LibSVM in order for a translation quality

prediction model to be trained and saved onto a text file. It optimizes

SVM parameters by automatically performing 5-fold cross validation.

 Parameters.java: Implements the IEditorDescriptionProvider interface,

and is responsible for providing all data necessary for the Okapi

Framework to build the interface for the user to setup the settings of the

quality estimation step in the Okapi Pipeline Editor.

 Like the QuEst Step, it also has a graphical interface, which allows for

the user to easily load the files necessary for the step to run. Figure 2 illustrates

the graphical interface of the SVM Model Builder Step.

Figure 2 – SVM Model Builder Step parameters

 The parameters in Figure 2 can be described as such:

 Lowercase: Determines whether or not the input data should be
lowercased.

 Temporary Folder: Folder where the intermediate processed input files
will be stored. Some of the files which may be stored in the input folder
are the ones containing the lowercased versions of the input translations
and their perplexity measures.

 Output Folder: Folder where the files containing the quality estimation
scores will be stored. In its current version, the quality estimation step
produces output in three distinct formats: plain text, XML and TMX.

 Features File: An XML file describing which features QuEst should
calculate for the given translations.

 Alignment Probability File: A file containing the alignment probability
for the words of source and target languages of the translations provided.
The file may be produced by any bilingual word aligner, but must be in
the same format produced by GIZA++.

 Source N-gram File: File containing the N-gram counts for the
translations’ source language.

 Source and Target Training Corpus: Files containing sentences in the
source and target languages.

 Source and Target Language Models: Two separate files containing a
language model for the translations’ both source and target languages.
The files must be in ARPA format, and may be produced by any
language modelling tool.

 SRILM Binaries Folder: Path of the folder containing the compiled
binaries of the user’s SRILM installation.

 GIZA++ Root Folder: Path of the folder containing the compiled binaries
of the user’s GIZA++ installation.

 MKCLS Root Folder: Path of the folder containing the compiled binaries
of the user’s MKCLS installation.

 Quality Prediction Model File: Path of the file in which to save the
translation quality prediction model produced by the step in plain text
format.

 Note that, since the SVM Model Builder Step uses the

QuestProcessor.java class to produce feature values, most of its input

parameters are identical to the ones of the QuEst Step, described in Section

2.1. As already mentioned, when finished running, the SVM Model Builder Step

produces a text file containing a translation quality prediction model, which may

then be passed onto the Okapi pipeline to the QuEst Step.

In order to make it simpler for unexperienced users to configure the SVM Model
Builder Step, we have included in the step a series of routines which
automatically produce some of the required resources previously listed. Those
resources are:

 Source N-gram File: If not provided by the user, the step runs
SRILM in order to create it. The resulting file is stored in the
“Temporary Folder” in order for the user to use it again, if necessary.

 Source and Target Language Models: If either or both of such
language models are not provided by the user through the interface,
the step calls SRILM in order to create them automatically. The
resulting files are stored in the “Temporary Folder” in order for the
user to use it again, if necessary.

 It is very important to mention that, in order for the step to be able to
create the missing resources, the user must provide valid files for the “Source
and Target Training Corpus” parameters, as well as a valid path for the “SRILM
Binaries Folder” parameter.

2.3. The Properties Setting Step

In order to allow for one to use the data produced by the QuEst Step in

annotation tools with graphical interfaces, we devised the Properties Setting

Step. This step has the purpose of using the TMX files produced by the QuEst

Step, which contain translation quality estimates, to annotate XLIFF files.

 The XLIFF format (XLIFF, 2014) is based on the well-known XML format,

and is very frequently used by localization, translation and annotation tools. In

the context of translation quality estimation, XLIFF files can be used to store

translations along with any type of property associated to them, such as quality

estimates. Ocelot (Ocelot, 2014) is an example of open-source tool which uses

XLIFF files containing translation data to allow for one to annotate such

translations in many distinct ways. Figure 3 illustrates the Ocelot tool being

used in the annotation task of the experiment described in Section 3.2.

 Such tools are an interesting alternative when it comes to displaying

translation quality estimates in a comprehensible fashion. Ocelot, for an

example, is capable of not only presenting translations along with its scores, but

also of assigning visual cues to different ranges of scores, as can be observed

in Figure 3. This resource allows for one to more easily assess issues and

limitations of quality estimation approaches.

Figure 3 – Ocelot opening displaying the content of an XLIFF file

 The Properties Setting Step is represented within the Okapi Framework

by the three following Java classes:

 PropertiesSettingStep.java: Extends the BasePipelineStep class from

the Okapi Framework, and implements the methods necessary for the

step to be made available in the Okapi Pipeline Editor. It initially reads all

translations from the input files provided by the user, along with a TMX

file with translation quality estimates produced by the QuEst Step. It then

invokes the PropertiesSetter.java class, in order for it to produce an

XLIFF file of annotated translations.

 PropertiesSetter.java: Extracts the translation quality estimates from the

input TMX file and use them to annotate an output XLIFF file containing

the translations provided by the user.

 Parameters.java: Implements the IEditorDescriptionProvider interface,

and is responsible for providing all data necessary for the Okapi

Framework to build the interface for the user to setup the settings of the

quality estimation step in the Okapi Pipeline Editor.

 When added to the Okapi pipeline, the Properties Setting Step exhibits

the interface illustrated in Figure 4.

Figure 4 – Properties Setting Step parameters

 The parameters in Figure 4 can be described as such:

 TMX Input File: An XML file produced by the QuEst Step containing
translations annotated with quality estimates.

 Property Type: A text field describing the label of the property in which
the translation quality estimates are stored in the TMX file.

 Once the XLIFF file is produced by the step, it may then be used for any
type of annotation task. In Section 3.2 we describe an experiment in which we
employ Ocelot, as well as all three steps produced in this project.

3. Experiments

3.1. Running Time

In order to evaluate the performance of the quality estimation step on producing

translation quality estimates, a performance experiment was conducted. In this

experiment, we ran the quality estimation step onto multiple sets containing

distinct numbers of translations from English to Spanish. The four selected

translation sets contained 62, 125, 250 and 500 test translations. The quality

prediction model was trained with the same set of 2540 translations for all test

sets. The configuration files necessary for the step to run are the ones

referenced at http://www.quest.dcs.shef.ac.uk/ under the WMT13 QE Task 1.1

section. The SVM prediction model was also built based on the WMT13 QE

Task 1.1 training set, by using the Java SVM Library.

 The experiment was run in a desktop computer with an Intel® Core i7-

4500U 1.8GHz and 8Gb of RAM running at 1600MHz. For each individual run of

the quality estimation step was measured the time taken for it to perform the

following 7 routines:

1. Quality Prediction Model Creation

2. Lowercasing

3. Language Model Loading

4. Calculation of Perplexity Measures (SRILM)

5. Feature Values Calculation

6. Feature Values Normalization (Java SVM Library)

7. Prediction Model Loading

8. Quality Scores Calculation

 The routines selected represent the most processing intensive subtasks

performed by the quality estimation step while producing quality scores. The

results obtained are shown in Table 1.

Nº of Translations: 62 125 250 500

Routine 1 114969ms 114969ms 114969ms 114969ms

Routine 2 17ms 16ms 14ms 14ms

Routine 3 16688ms 15971ms 16304ms 16245ms

Routine 4 3027ms 2834ms 3014ms 3709ms

Routine 5 47ms 79ms 164ms 417ms

Routine 6 24ms 44ms 62ms 92ms

Routine 7 174ms 161ms 203ms 198ms

Routine 8 92ms 129ms 271ms 652ms

Total 138.172s 138.330s 137.965s 138.001s

Table 1 – Processing time measures of the performance experiment

 One may notice that the three most time consuming routines are the

quality prediction model estimation, the calculation of perplexity measures by

SRILM and the loading of the language model. Although rather time consuming,

the quality prediction model estimation only needs to be done once, which

means that the user will not need to run the SVM Model Builder Step every time

they want to produce quality estimates for a given dataset.

 It is also possible to notice is that there are three routines which grow in

processing time linearly as the number of the translations double, which are the

Feature Values Calculation, Feature Values Normalization and the Quality

Scores Estimation.

http://www.quest.dcs.shef.ac.uk/

 The total processing time measures also reveal that, because the two

most time consuming tasks take several seconds to execute, doubling the

number of input translations doesn’t greatly affect the overall time it takes for

the step to finish its processing.

3.2. Experiments with Quality Prediction for Sampling

These experiments are aimed at assessing a possible way to use the quality
predictions generated using the Okapi version of QuEst: sampling “interesting”
translations for further human inspection, for the purposes of quality assurance,
for example, via error categorisation. The assumption is that interesting
translations will be those with average to high quality; since very low quality
translations are too difficult if not impossible to manually inspect, as they
contain too many errors and these cannot be easily categorised.

The experiments and results were submitted along with additional uses
of QuEst for sampling, to the Language Resources and Evaluation Journal. We
are still waiting for the reviews. In what follows we provide a brief summary of
these experiments.

We compare the task of error categorisation on data selected at random
against data selected according to quality predictions for two language pairs.
The training contain news excerpts extracted from the WMT12 training set for
only two language pairs: 2,209 English-Spanish (en-es) sentences and only 500
English-German (en-de) sentences. The test sets selected are the ones
provided for WMT12, being composed of 3,003 pairs of translations for en-es
and 2,737 translations for en-de. No true quality labels are available for these
test sets. The goal is to take small samples for annotation from them based on
their predicted quality. We took samples composed by the 50 highest scored
sentences from both en-de and en-es test sets.

These 50 QuEst-based samples were mixed with a control set of 50
randomly selected samples of source segments and their respective
translations. en-de segments were annotated by four translators and en-es
were annotated by three translators. The annotation tool chosen for this set was
Ocelot within Okapi, and all translators were properly instructed on using it
before being presented to the actual sets of sentences. The error categories
were a subset of MQM (Lommel et al., 2014): Terminology, Mistranslation,
Omission, Addition, Untranslated, Register/Style, Spelling, Typography,
Grammar, Uncategorized.

In what follows we highlight some interesting results.

 Perfect (no errors) segments versus segments annotated with errors
(any type and number):

 Total errors annotated:

We noticed a very interesting phenomenon: even though there was a
much higher proportion of segments judged perfect in the en-de than in the en-
es set, the annotators of the en-de set seem to have found many more errors in
QuEst scored segments than the annotators of the en-es set. Such observation
leads us to believe that, in the case of en-de translations, there is not a lot of
distinction in the nature of the sentences selected randomly and based on the
QuEst score, since both selection methods resulted in a very similar amount of
perfect segments, while the remaining annotated segments had nearly the
same amount of errors. We believe that such a phenomenon provides further
evidence that the main cause of this issue is the lack of adequacy of the
features selected for the estimation of the quality prediction model used for the
en-de dataset.

Such problem does not seem to have affected the en-es dataset in the same
manner, since the segments selected randomly deemed not perfect had many
more errors than the ones selected by using the QuEst score. In this case, the
hypothesis that high quality translations selected by automatic quality estimation
scores do not contain enough errors for them to be suitable for human quality
assessment does not stand, because even though en-es segments selected by
both criteria had almost the same proportion of perfect segments, the QuEst
scored annotated segments still had a substantial amount of errors to be
addressed.

 Distribution of errors:

This figure shows the distribution of the errors annotated. For both en-de
and en-es sets, errors of grammatical nature are the most frequently observed,
however, the proportion of uncategorized errors is much higher for en-es, which
is an indication that the overall structural adequacy of many both randomly
selected and QuEst scored Spanish translations have been more frequently
compromised. The error type distribution is very similar for randomly selected
and QuEst scored segments for both sets. Interesting differences between the
errors found in the sets can be noticed: while en-es errors tend to be much
more frequently related to grammaticality, annotations for en-de segments have
a more even distribution between errors related to grammar, typography,
terminology, mistranslation and omission. In counterpart, segments for both
sets have seldom been annotated for errors related to addition of unnecessary
lexical components, segment composition style, misspelling of words and
untranslated segments.

As a general conclusion, the experiment has shown that the quality of
prediction models can be greatly affected by the quality of the features selected.
We also found that, contrary to our intuition, selecting the best scoring
translations from a set can also be a reliable strategy for human assessment.
Even though many segments were judged to be perfect by annotators,
segments which were partially annotated still had a substantial, yet reduced,
amount of errors to be addressed.

4. Budget

The budget planned for the project development and data collection has been

spent as planned with the research intern and translators who participated in

the annotation for Section 3.2. The remaining budget will be use used to

support the participation of the research intern in the EAMT-15 conference to

demonstrate the software.

5. Conclusion

Through the series of experiments conducted with the quality estimation step, it

is possible to determine that it is a reliable and useful tool for determining the

quality of translations. The performance results show that, even though some of

the routines necessary for the quality estimates to be produced are quite time

consuming, the step is overall agile, allowing for hundreds of translations to be

evaluated in reasonable time.

6. References

R. E. Fan, P. H. Chen, and C. J. Lin. Working set selection using second order

information for training SVM. Journal of Machine Learning Research 6, 1889-

1918, 2005.

Ocelot. Available at: https://github.com/vistatec/ocelot. 2014.

XLIFF Format Documentation. Available at: http://docs.oasis-open.org/xliff/xliff-

core/v2.0/xliff-core-v2.0.html. 2014.

A. Lommel, M. Popovic, A. Burchardt. Assessing inter-annotator agreement for

translation error annotation. LREC Workshop Automatic and Manual Metrics for

Operational Translation Evaluation, 2014.

http://docs.oasis-open.org/xliff/xliff-core/v2.0/xliff-core-v2.0.html.%202014
http://docs.oasis-open.org/xliff/xliff-core/v2.0/xliff-core-v2.0.html.%202014

Appendices

1. List of Featres in XML Format

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<features>

 <feature class="shef.mt.features.impl.bb.Feature1001"

description="number of tokens in the source sentence"

index="1001"/>

 <feature class="shef.mt.features.impl.bb.Feature1002"

description="number of tokens in the target sentence"

index="1002"/>

 <feature class="shef.mt.features.impl.bb.Feature1006"

description="average source token length" index="1006"/>

 <feature class="shef.mt.features.impl.bb.Feature1009"

description="LM probability of source sentence"

index="1009"/>

 <feature class="shef.mt.features.impl.bb.Feature1012"

description="LM probability of target sentence"

index="1012"/>

 <feature class="shef.mt.features.impl.bb.Feature1015"

description="number of occurrences of the target word

within the target hypothesis (averaged for all words in the

hypothesis - type/token ratio)" index="1015"/>

 <feature class="shef.mt.features.impl.bb.Feature1022"

description="average number of translations per source word

in the sentence (as given by IBM 1 table thresholded so

that prob(t|s) > 0.2)" index="1022"/>

 <feature class="shef.mt.features.impl.bb.Feature1036"

description="average number of translations per source word

in the sentence (as given by IBM 1 table thresholded so

that prob(t|s) > 0.01) weighted by the inverse frequency of

each word in the source corpus" index="1036"/>

 <feature class="shef.mt.features.impl.bb.Feature1046"

description="percentage of unigrams in quartile 1 of

frequency (lower frequency words) in a corpus of the source

language (SMT training corpus)" index="1046"/>

 <feature class="shef.mt.features.impl.bb.Feature1049"

description="percentage of unigrams in quartile 4 of

frequency (higher frequency words) in a corpus of the

source sentence" index="1049"/>

 <feature class="shef.mt.features.impl.bb.Feature1050"

description="percentage of bigrams in quartile 1 of

frequency of source words in a corpus of the source

language" index="1050"/>

 <feature class="shef.mt.features.impl.bb.Feature1053"

description="percentage of bigrams in quartile 4 of

frequency of source words in a corpus of the source

language" index="1053"/>

 <feature class="shef.mt.features.impl.bb.Feature1054"

description="percentage of trigrams in quartile 1 of

frequency of source words in a corpus of the source

language" index="1054"/>

 <feature class="shef.mt.features.impl.bb.Feature1057"

description="percentage of trigrams in quartile 4 of

frequency of source words in a corpus of the source

language" index="1057"/>

 <feature class="shef.mt.features.impl.bb.Feature1058"

description="percentage of unigrams in the source sentence

seen in a corpus (SMT training corpus)" index="1058"/>

 <feature class="shef.mt.features.impl.bb.Feature1074"

description="number of punctuation marks in the source

sentence" index="1074"/>

 <feature class="shef.mt.features.impl.bb.Feature1075"

description="number of punctuation marks in the target

sentence" index="1075"/>

</features>

2. Output Example in XML Format

<?xml version="1.0" encoding="UTF-8"?>

<root><translation><source>Norway's rakfisk: Is this the

world's smelliest fish?</source>

<target>De Noruega rakfisk: Es el pescado smelliest del

mundo?</target>

<features>-0.7407407407407407 -0.728813559322034 -

0.11111111111111116 0.83229387418794 0.7586961028899839

 -1.0 -0.8671070096706909 -0.8917140211166443 -1.0 -

0.25 -1.0 -0.6938775379008748 -1.0 -1.0 -0.25 -

0.6363636363636364 -0.6363636363636364</features>

<score>3.9053006637995322</score>

</translation>

<translation><source>Norway's five million people enjoy one

of the highest standards of living, not just in Europe, but

in the world.</source>

<target>Noruega de cinco millones de personas disfrutar de

uno de los más altos niveles de vida, no sólo en Europa,

pero en el mundo.</target>

<features>-0.2962962962962963 -0.22033898305084743 -

0.4370370370370369 0.5349145202982803 0.5645882250556289

 0.13360286564931934 -0.850641552367107 -

0.9702647121591003 -1.0 0.6000000000000001 -1.0

 0.35338334747583344 -1.0 -0.010100962020201165

 0.5294118000000001 -0.4545454545454546 -

0.4545454545454546</features>

<score>3.8672816179550944</score>

</translation>

<translation><source>Could the secret of the country's

success be connected to the local appetite for some

exceedingly smelly fish?</source>

<target>¿Podría el secreto del éxito del país estar

relacionado con el apetito locales para algunos

excesivamente malolientes pescado?</target>

<features>-0.37037037037037035 -0.423728813559322 -

0.2839506666666667 0.56056346858057 0.5124092613954379

 -0.46153844497041374 -0.7386034131850072 -

0.705089973303977 -1.0 0.5555555999999999 -1.0

 0.13445384903961521 -1.0 -0.20454543863636332 0.75

 -1.0 -0.6363636363636364</features>

<score>3.666694226241736</score>

</translation>

</root>

3. Output Example in TMX Format

<?xml version="1.0" encoding="UTF-8"?>

<tmx version="1.4"><header creationtool="unknown"

creationtoolversion="unknown" segtype="sentence" o-

tmf="unknown" adminlang="en" srclang="en"

datatype="plaintext"></header><body>

<tu>

<prop type="quest:id">/C:/Users/GustavoH/okapi-

quest/steps/quest/target/test-

classes/net/sf/okapi/steps/quest/source_test.eng_1</prop>

<prop type="quest:features">-0.7407407407407407 -

0.728813559322034 -0.11111111111111116

 0.83229387418794 0.7586961028899839 -1.0 -

0.8671070096706909 -0.8917140211166443 -1.0 -0.25 -1.0

 -0.6938775379008748 -1.0 -1.0 -0.25 -

0.6363636363636364 -0.6363636363636364</prop>

<prop type="quest:score">3.9053006637995322</prop>

<tuv xml:lang="en"><seg>Norway's rakfisk: Is this the

world's smelliest fish?</seg></tuv>

<tuv xml:lang="es"><seg>De Noruega rakfisk: Es el pescado

smelliest del mundo?</seg></tuv>

</tu>

<tu>

<prop type="quest:id">/C:/Users/GustavoH/okapi-

quest/steps/quest/target/test-

classes/net/sf/okapi/steps/quest/source_test.eng_2</prop>

<prop type="quest:features">-0.2962962962962963 -

0.22033898305084743 -0.4370370370370369 0.5349145202982803

 0.5645882250556289 0.13360286564931934 -

0.850641552367107 -0.9702647121591003 -1.0

 0.6000000000000001 -1.0 0.35338334747583344 -1.0 -

0.010100962020201165 0.5294118000000001 -

0.4545454545454546 -0.4545454545454546</prop>

<prop type="quest:score">3.8672816179550944</prop>

<tuv xml:lang="en"><seg>Norway's five million people

enjoy one of the highest standards of living, not just in

Europe, but in the world.</seg></tuv>

<tuv xml:lang="es"><seg>Noruega de cinco millones de

personas disfrutar de uno de los más altos niveles de vida,

no sólo en Europa, pero en el mundo.</seg></tuv>

</tu>

</body>

</tmx>

